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E TAS0RY OF PROPELLERS

l
Two approaches to propeller theory are possible, namely,

the purely dynamical reaction theory for any kind of actuator
:nhich produces a slip stream (or jet), and the blade theory which
treats the screw-propeller proper as a system of airfoils rotating
‘about and advancing along the axils of the driving shaft. The
first theory gives the fundamental characteristics and the upper
limits of thrust versus torque, air- speed, and power not only for
propellers but alsc for wind motors and ventilators (fans); the
- second theory determines the distribution of diameter and blade
chords best adapted for a required performance.

Both theories as far as they overlap agree with each
other and supplement each other in special points.

‘The Reaction Theory.

Assume sny mechanism (actuator) which creates in its
plane of action (propellsr disc) a sheet of pressure Jump (gener-
" alizotion of the pressure difference between the suction and
pressure surface of an airfoil). The pressure jump will produce
en acceleration of the fluid and by it a so-called propeller jet
(or slip stream). 8ee Fig. 1.

Figure 1.

The jet of Fig. 1 shall establish itself in a medium (ths
free atmospnere) which outside the jet i1s under constant pressure
and elther at rest or in uniform motion. The pressure differen.:
in the Jet are supposed to be small enough to consider the fluid
a8 incompressible. Furthermore, while the jet is exactly in
equilibrium at its boundary with the surrouvnding fluid, a pressur
iifferenﬂe at the converging surface of the jet when appeering in
the may be allowed and may be qualitatively explained by
T-E centrifugal forces of the curved streamlines providing a
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transition in a thin surface layer from the outside to the inside
pressure.

For simplicity assume &a uniform velocity distribution
in each section; this assumption can be proved to give the high-
est efficlency.

The velocities v shall be the velocities relative to
the propeller disc, so that in general v, 1s equal to the forward
speed of the propeller.

For the application of dynamic principles the absolute
velocities of the Jet left behind by the advancing propellers are
needed. They are, for instance,

(1) ijﬂhE- = Vg~ Yo

The dynamic principles shall be applied now. The
momentum increwse per unit of time is equal to the [orce.

dmv _
at = s
and in this special case %%? = F. Therefore,
(2) PSvl(vE - vD) =T

where S is the area of the propeller disc, T is the propeller
thrust and PSvl is the increase of mass per unit of time in the

slip stream
The engine power P driving the propeller is consumed

artly by the work of the thrust T driving the propeller disc
%ur the ship) with velocity v, and partly by the 1lncrease of

kinetic energy of the slip stream per unit of time.
v (v_ -V 24+ 1Ty =P,
(3) %t: 1{ 2 n} o

A third principle is needed to represent the assumption
of the pressure jump in the plane of the propeller, which 1is
equal to the thrust T divided by the area S. Here the Bernoulli
energy equation of the two parts of a strecamline in front and
behind the disc shall be applied to give:

2 _ 2
1:'-::: * éfwn Pf+ %Evl

+ 1 gve = + ve .
pn 2 ¢ e Pr %E? 1



By subtraction we have
@ N AR

and using eq. (2)

Bvl(vE - vﬂ] = (vE - vo) (?E + vu}
= + -
vy = #(v, + v )
Or when expressed in absolute velocities, v, = vV + v,
1 1,abs. o)

and v = v + v , we have
e 2,abs. o

v v
() l,abs. : 2,abs. °

That is, one half of the absolute velocity of the slip stream is
already gained (by suction) at the plane of the propeller disc.

In this way the following two equations are sufficlent
to determine the charzcteristic action of the supposed 1ideal
actuator.

(2a) T éps(?g - V‘z)
P=3 ?Evn(vg - vg} + %{?E + ?n&(ve - vD)E

(3a) = iueﬁ(?g - vﬁ)(vz + vﬂ).

From these results follows readily the efficlency

1‘{=T_YE= | vD 1 [

B 3w +v) v
2 o 31+
0

or in absolute velocltlies

(6) Moo= —
2V
2,abs.
1l + v,

This expression shows that a high efficiency can only
be obtained by a slip stream velocity small in comparison to the
forward speed of the ship.
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thrust a certain value of the product § is necessary. Therefore,

for high efficiency one has rather to choose a large area of
propeller disc in order to avoid a high slip stream velocity. On
the other hand, the blade theory of the propeller given in later
chapters will restrict the area 8 by other considerations.

But equation (2a) shows that?ga obtain the required
2

For very high travel veloclty v, higher slip stream
velocity v, or vy . are allowable according to equation (6) so
’ -

that in such cases smaller propeller disc area 5 would be allow-
able (turbine propulsion).

Thrust Power Equation.

It is convenient to introduce into eqs. (2a) and (a)
the dimensionless variables

T = ——I—“E , 4a thrust variable,
t pSvy
£ = —_E__E , an engine power variable,
4 oSV
and 0o
v
= a slip stream variable.

v »
o

-

Equations (2a) and Ba) will take the following forms:

]

¢2'1:
(¢ % - 1)(¢+1).

(2b) g

I

(3b) £

Eliminating -¢, £ can be expressed in terms of T so that:
(7) E = v +y1+7).

Asking for thrust in terms of power an equation of the
third degree would appear. Thereiore it is more convenient to
solve eq. (7) graphically by drawing the curve €& = f(7 ). See
Fig. 2.

This curve gives for any horsepower P, propeller dilsc
area 5, and airplane speed v  the ideally obtainable highest

thrust, but one must not forget that such ideal values ere limit..
by considerations which will be treated later.

For a stationary propeller, azs in tane take-off of an
airplane, in a heliccpter, or for a fan, where Y, is zero, the
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Figure 2. € = f£(t).

dimensionless representation by ¢, 7, and £ 1is not usable any
more and the basic equations (2a) and @a) must be used. Thus

T=&p5v§ )
P =i~Qng .

so that the Jet velocity vE and the thrust T are given by the
power Pavail’ the density e and the disc area S5 in tne form

3
8 v, = 4p
@ 2 o8
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and,

&
(9) T=~/EP295 .

In the case of the airplane or helicopter the maximum
of T is desired and one observes from eq. (9) that the thrust

increases more slowly than the power, the density, and the disc
area.

In the case of a fan the maximum of mass output per
second is desired, that is

(1.0) ' pv,S =~‘,/E 4PP‘EEE

which shows that the accelerated mass increases more slowly with
the power then the thrust, but that an increase in density and
arez is more effective than for the thrust.

Working against pressurce the results for the fan
become somewhat difierent if it does not work against free alr
Py = P, @5 assumed here, but into a room which is under higher

pressure ps > P,- This would change only the statements of the
Bernoulli equstion, which then become:

p, + %P“E = py + %ﬁvf

2 - 1..e
+ = + .
Py + BVg = Pt 2VY

- =T - _ ogR -
P = P E'i‘f(’ﬁe Vel t Py T Py

Equations (2) and (3) in thls case must also be completea for
the counterpressure Py in the slipstream or the pressure excess
Op = pg - Pys viz.:

(2b) T = val{vE - vD) + ApS
(3b) P=Tv, + %?Ev]_{vﬂ - vn)E + dpEVi.

The additional term in T gives the retarding force due to the
counter pressure, while in P it takes into account the pressure
energy of the jet after it has become cylindrical.

Comparing now the two expressions for L the following

e

relation is obtained:
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v (vp = vg) + Q=BG - ) + 4R
so that again as in (5)
(5b) v, = %{vn + va).

The value vy from eq. (5b) must then be used to eliminate v, from

equations (2b) and (3b). This procedure may be necessary for the
case where it 1s required to furnish in a cabin for stratosphere
flying a pressure excess.

The Windmotor.

The equations (2) and (3) are also applicable for the
reversed flow through a windmill or s windmotor or a rotating
windbrake or parachuting helicopter. Using the same dimensionless
notations as for a propeller (cnly changing the sign of ¥ and &)
the performance 1s zgain givin by

. 2
t’*—*l-gj
/"ﬁ”—‘:— . - o
-_.P:!' - ‘I;.":'{i..ﬂ ."'._}-{E}..—* — (1-? }(1 +p)
_ —_— 2
v Here the desirable maximum is the
> 1% fﬁ-ff%' 12, power gained for an appropriate
) value of the flow retardation
ratic ¢. '

Flgure 3.

Therefore 1t may be demanded:

%=ﬂ=-2¢(1+¢)+1-¢.2

=1 -2¢ - 3¢
(¢}£m. =%nr *%.
€ max. ='§% .
®, =3

These results mean that the moximum power is geined if the wind
veloclty, or in a more general expression the relative inflow
velocity, 1s retarded to one third of its value sufficiently far
behind the wind motor and that then the power gained is given by
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P _ 32

ll _ = 1
(11) kPE?g o7

while the thrust prnduced}necess&ry to know for strength calcula-
tion 1is

“—?T =
%PE?D

wi

The positive value of ¢ gives a maximum of £, the
second negative value a minimum of £ as cne sees by the value of

the second derivative, The negative value of ¢ that is a counter-

flow in the region behind the motor would require some artificinas
realization but it is not desirable anyhow.

The general equations for a non uniform distribution ir ti-
slipstream, which is still assumed to be non-rotating, (engine
torque balanced inside the propeller mechanism), may now be given.
As will be shown, they prove that the highest tnrust for a pre-
scribed engine power is obtained for the uniform distribution.

For a2 non uniform velocity distribution the Bernoullil
egquation gives as before

vy T %{vz + V)

because for a streamline, just as in (4)

(4a) .%=Pr—pf=%f'(v§-v§}= e vy (vg - v,)-
The general dynamic equations become therefore
(2¢) T= pfds vilvg - v) = 'E as(vg - v2)

p = Ejﬂﬁ[(vg - ?E)vn + %{vE - vD)E(vE + vﬂ}]
(3e) = EfﬂS{?g - vg) (vo + ?ﬂ)

where vo is an arbitrary function of the coordinates, depending -
the design of the mechanism.

The problem is now to determine v, as such a functior .

the coordinates that for a given power F the thrust T be a maxi-
mum. A well known method glves the following conditions:
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TR SR UREN Y.

fdﬂ(vg - vi) (vg + v,) = ilfl .

Hence vg = vo(A,¥ ) = const., and therefore the desired maximun

is obtained by returning to the case of uniform velocity distri-
bution, that is, to the case discussed in the previous chapter.

It may be mentioned here that if the approach velocity
Vo 1s disturbed by the influence of the aircraft body so that v,

is a function of the coordinates then the jet velocity vg will also

become a function of the coordinates, for from the first of the
above conditions

2
v = 2 - }L\rn‘i \/‘(;" ?R?Q)E_b E_.
2 6 6 A g

If this expression for Vg is inserted into the integral for the

power, the Lagrangian coefficient A is determined, and conse-
quently vo as a function of Vo and of the limits of the power

integral.

It may further be indicated that it 1s possible by
means of a non uniform distribution of velocities and pressures
in the cross-sections of the slipstream, produced by the design
of the mechanism, to satisfy exactly the boundary condition of
continuity of pressure at the boundary of the Jet, This can be
done in different ways. Naturally, distributions which give a
thin transition layer and which approach a uniform distribution
will be preferred.

Assume for instance that the mechanism is so constructed
that at the boundary p, = Pe = Poe From (4a) at the boundary also

Vg =V, = V.

From the relation preceding (5)

E‘vl = 'H'E + Vo

and the two Bernoulll equations for P, and Pe (See Fig. 1) it is
readily seen that the requirement

Pr = pf = pn at the outer boundary

has the consequence
Vo = V1 = V4 at the outer boundary.
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Therefore both conditions are covered by putting
iy
= — -_1-
(12) v, =V, 4 V1,0 \ll (R]_ .

Thig assumption is illustrated in Fig.(4).

Thrust and power in (2c) and (3c) Wat!
in terms of vy instead of vy =
take the form: -—t -
(ed) T = 4Wﬁmlrlv1(Fl ~ ?u) -
- ) NPRE
() P = Wﬁrlrlﬁivl v,) “6"'{‘1::

and upon inserting the elliptical |
aistribution given in (12), introducing —* =< , =% =¥/ and
1 s

again the thrust number T and the power numbex ¥ .
(2d) and (3d) become

(2e) T = B'dji ric 1 -a® (1 +y\1 - o)
0

(3e) £ = 18y | vdc \Il_—::;: (1 Hyﬁil -{FE}E
O

1oad The integration, easily performed by putting 1-0%- -,
eads to: .

T = %.-4,{1 + '.i.’.?)

€= 2y + 2y + 29P).

These equations can be discussed in the same way as (2b) and {(#1).
especially graphically as in Fig. (4).

It mey be interesting to consider the relation betwecrn
the elliptiecal velocity distribution on one hand and the corre~s-
ponding thrust and power distributions on the other hand. Thn~
latter are given by the integrands of (Re) and (3e), viz.:

(13) T = i'g = gyo\1 -2 +¥ 1 - %)

2
(14) g Eg—i = 16yrll TP +y |1 -0 %) .
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These expressions, which depend somewhat on the choice
v
of the velocity number ¥ = —%AE, that is, on the value of the
o

total power P = £ X %p?ﬁﬂ, are qualitatively shown in Fig. (5).

It is characteristic that the :_“‘T\ g
distribution curves approach I
the limit ™ = 0, &' = 0 for !

O = 1 more suddenly than the
velocity distribution and also

with a2 tangent perpendicular £ _ de EL
to the radius R, (oo =1), YV Vas*a
: [V, =V
These results of the ;ﬁf 1—7 £
assumption (12) are very similar ) o
to the results of the hydro- IJJ"\ at . =
dynamic blade theory treated in i ds o
later chapters, and in fact the '
two can be made to colncide. Figure 5.
opell Mecha oduci ctation Stream.

In the previous sections it was assumed that the torqus
in the propelling mechanism (actuator) was counterbalanced eitii-
by counterrotating propellers or by guide vanes either in front -
behind the propeller.

More often the engine torque driving the propeller is
not counterbalanced in this way, so that the moment of momentum
law will demand a rotation of the slip stream, which, in certain
cases indicated below,causes an appreciable loss of energy.

For the extension of the theory including slip stream
rotation equations (2) and (3) must be completed and the moment o.
momentum equation must be added.

The basic equations become thus:

(15) T = pP5vy(vy - v.)s

- 2 2
(18) P= Tv  + 3 P8V, [(?E - vﬂ) + vm],
where L 1s the average tangential velocity defined by the follow-

1ng expression

2 _ 2 -
(17) Evm = u[;fds’ where v, = ?t(rE)

and the integral is taken over the A section,



Figue 6.

If Q is the torque of the engine, the moment of momentum
theorem gives

(18) = pSVIV T,

where r, 1s the average radius of momentum defined by

(19) Sv r. = ur%grgds.

The theorem of moment of momenlum gives also a relation
between the circumferential veloclities ilmmedlztely behind the pro-
peller disc and in the cylindrical part far behind if the friction
between annular flow layers is neglected, namely,

(20) VeoTs

Y$171 T VeeTe
As the axial flow vy and Vo is assured to be uniform,

there is a simple continuity relation between the radii and the
axial velocities

2 2
21 =
(21) V171 T YeTe?
so that egqs. (14) and (168) can also be written
(22) Sv vE = v ‘IQE ds
(23) v r _-r;tlrlds

where the intezrals are now to be taken over the propeller diesc

area Sl.

A fourth equation is necessary, as in the preceding
section without torque, to state the condition that the pressure
discontinuity at the propeller disc plane produces the thrust.
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The Bernoulli streamline gives
P, * iF(v: + Vi) = p,+hp(v] + o)

t
pu+ipv§#pf+ipv§.

In the second equation no circumferential velocity appears be-
cause in front of the propeller there 1s no mcment. Sirze from
equations (17) and (18),

'ﬁﬂ = 'Eurffrg = Vv /99

tl1 2

subtraction of the two equations yielda the vo.iwe of the thrust
element:

= - = - -1y L] TF__E
dT (pr pr)dE dpdas( vﬁlf_l v, el .ru)

Hence by integration, using (19)
_ 2 1 2
= %Fs(vm{l - 1'1/1:2) - ':rn).

Introducing again the dimensionless varliables
T=1/% PE?E

u.‘
é1 lTASY )
Oy = ve/Vys
and, ‘#ﬂ = ?m/?n'

One obtains T= 6‘:(1 - ¢lf¢|2) + ¢: - 1.

Comparing with eq. (12) gives

021 -0/¢) + & -1=26

or, Edﬁ(‘ba -1) - (¢2 - 1)1#" + 1)
=_"’sf(1"a; DG -4 -1
o, - 4,
¢, -1
(24 = -1 1 - ,
) %(% ](W 1)

which for non-rotation (m = 0) reduces to the former result,ec.f{’:
Now observing that torque, power and the angular speed of the
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propeller () are related by

Q = P/"-'-‘ ’
and introducing the dimensionless quantity
(25) = or /v,

which can be described as an average circumfe
speed of the propeller, one obtains from eq.
tion

(26) €=4000,.

The complete set
peated now,

rential relative
(15) the final equa-

of equations derived before may be re-

(27a) T= Eﬁi(ﬁh,- 1),

(27p) £ =2t+ 20(@ - 17 +0°),
2 1 2 -1 "

(27c) #a = 98, - VgV,

(27d) P =€E/aQ fpm.

Remark: In these equations the pressure decrcase in the slip-
rotation of the

stream caused by the centrifugal force of the
slipstream expressed by

(28)

has been neglected; this neglect
implies that v << V_, which
t,2 P
can be verified by the numerical
results of the equations (27a)
to (274) by means of the neglect-
ed additional terms, which for
the thrust are

L =- ﬂE(PE - Pn}
(29) T, = --ﬁ-fdsjﬂl ar "_zl
Ty v
O
and for the power
P, = - dEvl(pE




a 2
(30) & = - %5 as ¢, Sjl rlfv%‘rf)

The effect of these neglected terms will partially
cancel out in the efficiency expression because, as (29) and (30)
show, they cause a decrease of thrust as well as of power. On the

other hand, as both values decrease a greater disc area will be
required by such a correction in order to absorb a prescribed
engine power.

The problem presented by eq. 5 (27a) to (27d) may now
be discussed.

In general the density ® (altitude) the forward speed
L the disc area S, the engine power P and the angular velocity

w (number of revolutions per second n =-§%;) will be prescribed
and those values of vl, ?E’ vm and rm which give a maximum thrust
T will be sought.

In the dimensionless variable defined here this means

that the values of the power variable&
v

and the adwvance J =-41-

are prescribed and such wilues of the wloclty variables ¢1’ ¢g’ dJm

r
and the relative mean radius -2 = r; are desired which give a
R
1

maximum'nf the thrust variable T,
Eliminating T and dh from (27b) by means of (27a) and

(27¢) one has the expression for the power variable t:
2 2
207(0, - 1)
k|
d’z B ¢1
from which 4;"1 can be expressed by dJE and £ in the form
= &
—Ei\lg + 8EQ (g - 1)

(¢, - »°

(27e) £ =

(1) 9, =

and inserted in (27a) so that:
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-€ £ \[€* + 8EQ,( 9, - 1)2
2(¢, - 1)

(32) T =

As € 1s prescribed and dJE is now the only remaining wvariable
which can be chosen the maximum of T must be found by putting

a% .
& =0-

e
2 2 4 .
£ (¢2 - 1) [E(diz -1) - s(m{ga - 1)]—

A zero value of the factor ¢ - 1 does not give a use-

This leads to

ful result as it leads to the triviality' €= 0 if inserted in
(27b). The condition t.hat the factor in brackets is zero may be

N TC L a(0, - 1°(39, - 1)

(33) €= y €' =

3%‘1 m%-mg

and it is represented graphically in Fig. 8

l2

€

-
aka:

Figure 8,
¢E being given as a function of £ by (33) for the propeller of
maximum thrust, (31l) gives the corresponding values of cﬁ and
(27¢) the corresponding values of ¢ (the average tangantial

velocity). Finally the resultant relative radius ¢ -ifl
1 .
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ascribed to ¢' is given by (E?ﬂ) in the form:

(274) ¢,7 = oy 4¢¢'
- v
in which the value of the advance characteristic J = —2
u::Hl
appears, which was assumed to be prescribed by the tip radius Hl’
the forward speed vu and the rev.,p.m. J = _S%Fl_

Therefore it is possible to construct sets %f curves
giving the thrust variable T, the efficlency 7 = ythe axial

Jet velocity variables ¢ andt#l , the tangential velnnity variable

¢m and the radius wvariable d‘ as functions of the advance var-

iable N = ;:E- with the power variable £ as parameter.
Ry

Of technically interesting questions which can be an-
swered by these sets of curves the following may be mentioned:

What are the efficienﬂies‘q of

\'d

(1) a slipstream rotating due to the advance value J = ——

ﬁJRl

and (8) a slipstream non rntating due to counterbalancing of the
propeller, where the power variable § is equal in both cases?

Near which values of the advance and power variables
lie the greatest efficiency losses due to rotation?

If equal efficiency is required for both cases how
great is the percentage of saving in disc area S or disc radius
Rl of the counterbalanced propeller compared to the single pro-

peller?

, v
If the average tangential velocity variable 4;=«EE—
™ O
and the corresponding radius variabled = 'ﬁE are found which
| 1

tangential velocity distributions produce these two aversage
values?
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THE BLADE THEORY OF THE SCREW PROPELLER

In the preceding chapters the essential dynamic fea-
tures of propeller action have been treated without making any
suppositions about the special propelling mechanism. Results
on the velocities necessary to obtain maximum values of thrust
or power or mass output were obtained but the structural means
of enforcing these velocities could not be given.

In the following chapters the theory of the Screw
Propeller as the mechanism nearly exclusively applied for pro-
pulsion of aircraft and other ships shall be outlined.

The Screw Propeller is a system of blades or wings
forced to rotate about an axis substantially perpendicular to
their centroid (longitudinal) axes, this system at the same
time advancing substantially in the direction of the driving
axis (the drive shaft).

The theory of such a system must be a generalization
of the wing theory of the airplane.

The principles used will be, just as in the wing
theory, the conservation of circulation and vortex strength,
the notion of bound.and free vortex sheets, the Biot-Savart in-
tegral for the induction of velocities by vortex distribution
and the expressions of 1lift and drag coefficients.

The exact hydrodynamic problem of a wing system in
helical motion is mathematically much more complicated than in
straight translation, even if, as at present, the theory con-
fines itself to a first approximation of induced velocities
very small relative to the undisturbed relative velocity at in-
finity and of the concentration of the wing to a bound vortex
line. Nevertheless, the theory with the addition of some other
approximative considerations has given already useful indica-
tions for technical developments.

Fig.(10a) shows the front view of a propeller system
and a cross section of a blade on a circle of radial distance
r, while the outside or tip radii are given as T,

The fluid is flowing against this cross-section with
a relative resultant velocity V and the resultant force exerted
by the fluid on this blade element cdr (see Figure (9)) will
be pegpenﬂicular to the direction of the resultant inflow velo-
city V.

This direction is obtained by adding to the undisturb-
ed inflow angle of the induced change of inflow angle i and, in
order to obtain the effect of the parasite drag, a drag angle S.
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Axis of no 11:1;---«-; /A» I 2
27

Pitch angle

- -1,

tan o7

I VAR VA

()

Figure 10.
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The resultant force element dL (1ift element) can
then be written in the form:
(34) 4L = Crgcdr
where q =45~?E is the dynamic pressure,
and according to experimental results about the retardation of

the ;elncitr by a parasite (form) drag angle § it may be as-
sume

(35) v = v - k§)
where (sec Fig.(s))
(38) ?i = 'HE + hFrE

and kK is an experimental coefficient of the approximate magni-
tude k —= 7,5, '

The reason for putting the velociiy LA (without friction drag)

equal to the undisturbed velocity follows from dynamic consider-
ations which show that the additirn2l - -duced vel>eity i1s per-
pendicular to the direction of the 4isturbed inflow; tkis re-
sult for the small induced angle 1 permits neglect of the velo-
¢city change caused by induction.

From (34) the element dT of- the thrust component and
the element dQ of the torque component follow in the form:

(37) dT = dL cos(oe+ 1 +&)

(38) dQ = dLr sin(o.+ 1 +§),
From these relations follows as local energy loss
(39) 4E = Qe - aTw = arw-Sinil )

and the "local" efficiency

= 1w - anet .
Mloc.  dQw tan(ad + 1 +3)

-

(40)

This result is quite analogous to the efficiency of a scr
thread of pitch angleo and of angle of rriction f = 1 + .
arplied to 1lift a weight dT by means of a tcrque dQ, but while
the angle of friction of such a hoist mechaism is a rroperty
of material and lubrication the analogcus argle here is a con-
plicated function of the vortex distribution in the whole fluid
region.
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From the expressions (37) and (38) one may now pro-
ceed to the values of the total thrust T and the total torque
Q by integration, as the mutual influence of all elements is
taken into account by the induced angle values i1 not yet known
but to be determined.

This means,by introducing i + &,each blade element
can be treated as an element in a two dimensional flow (of a
wing of infinite aspect ratio).

Therefore
2
T = 151-5 CL%vntl - k§)cdr cos(ex+ 1 +58)
1
_.Ve A gy®
Q=1 Cr, EVGEI-ES)crdr sinfet + 1 +8),
I

i
where 1 is the number of blades.

These relations may be transformed somewhat by intro-
ducing a dimensionless radial abscissa

s =cotor =L
L)

e

2 2
so that V¢ o= wo(l + @BB)*) = and
o ( fﬁr) ) - ;I;g;'r

further a dimensionless relative blade width
b =dc_ .
err

The angle 1 +§ is always so snzll
cos(i +§)~1 and sin(i +8)~i + §,

Relations (37) and (38) become now:

(41) T=T€ F;f'hcds(s- (1 +S)N1+=E{l-k$)
w'vs;, L

5
(42) Q=T® ::5 SS'B bC ds s(1 + s(i +$))511 + s”{l -k$)
s
i
bC, may be called the relative lifting capacity of

L
the blade system per unit of blade length.
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The quantity bCp and the outside and inside radii of the blades

can be considered as the structural design functions of the
propeller system.

Another representation better applicable to the hydro-
dynamic theory expresses the 1ift coefficient EL in a well

known manner by the circulation around the blade cross section,

leaving out the parasite drag, by means of the Kutta-Joukowski
theorem, viz:

: = O -
From: liLn CL,u 5 FD cdr ET"?Ddr
follows: '
(43) CL,n c?n = 2T,
One may introduce a dimensionless circulation
variable wl
(44) ™ = T5%

and also dimensionless force coefficients as follows:

a thrust coefficient

(45) Cp = :ﬁ B
‘torque and power coefficients
(a6) CQ = o5 = Cp =L§£ respectively
an energy logs coefficient

EoS
(a7) Cg =!;5 .
Then
(45a) GT=5d5 T* [3- (1 +S‘}] (L-k§)
(46a) ¢, =jds s T# [1 + s(1 +S‘J_] (1 -x%x9)
(47a) cé = Sds‘[""ﬁ (1 +8)(1 + £ - k§) .

The essential problem of a hydrodynamic blade theory of
the propeller consists in the determination of the distribution
of circulation T" around the blades corresponding to a distri-
bution of the induced inflow angle change 1 at and along the
blade axes and vice wversa.
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If one contents oneself with a knowledge of the mean
inflow angle change ip on each circumference instead of the
local angle change i1 at each blade section the solution is not
difficult. This average solution gives a good approximation for
a propeller system of many narrowly spaced blades and has even
been approximately adapted to small blade numbers .

This simplification may be given asapreliminary intro=
ductiomn tothe physical meaning of the problem, though it makes each
value of depend only on the value of T' at the same cross-
section and it shows only by an additional somewhat artificlal
adaptation the necessary approach of ' towards zero at the tip.

y ’
Y /
/ /

/ /

/ — ¥ s
—— & ]
"~ Figure 11l.

Fig. (11) shows the arrangement of the blade sections on the
circle of radius r developed in a plane with a circuit around
one blade section on which the circulation 7' will be calculated.

Obviously only the part of the circuit lying on the
plane of rotation behind the trailing edge of the blade gives
a contribution to the circulation T' , because in front of the
blade there is no average circumferential velocity and the con-
tribution on the curves along the flow between the blades cancel
each other on account of symmetry.

Now the circumferential velocity behind the blade
according to Fig. (1)) is w* = 2?*-%-= 21 w.

The factor 2 must be introduced because the induced
tangential velocity v* increases from zero in front of the blade

to the value 2v#* behind the blade and because the mean value in
the axial direction determines the 1ift force dL.

Therefore:

T = 21 w2 /L

T =T% = 21 2271Tr = 4TTips.

. Equations (45), (46) and (47) can now be written in the
orm:

Se
(45b) Cp = .wf ds sjm[s—{i-l- § )] (1-k8 ),
: S4
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(46b) Cq = 41TS:E ds sﬂim [1 + s(1 + S)] (1 -k§)
1
& 2

(47b) {:E=41r$ ds s (1+ 891 (1 +5)(1 - k)
i

One can conclude from general considerations that the
difference between im and i must decresse with the number of

blades, that is must decrease towards ths rcot of the blade, and
that i must become zero for s = s, tlat is, at the tip of each

blade, because the circulation, just as in the wing theory,
must be zero on account of the Helmholtz thenrem that the circu-

lation or vortex strength can not end sbruptiy.

In order to make the mean angle change im more nearly

equal to the local angle change a nozzle ring enclosing the pro-

peller so as to hinder the radial escape of the flow from the
ressure side around the tip to the suction side of the blade
%see Figure 12) has been suggest- ,

ed and recently tried for marine

propellers with some success.

To apply such a de-
vice for air propellers seems
to lead to cumberscme structur-
al details.

The last set of equa-
tions varies the problem of a

hyirodynamiec treatment insofar e — —
tha% instead of the relation i

between the distributions of ,#,ff“”'T‘_

local argle i and circulation B —
T, the relation betwecn 1 and —

its mean value distribution is Q‘ﬂrf"

sought. This change ol gues-

tion mcy give an sdditiocnal

physical aspect but mathemati-

cally it is only cnother me- '

thod of expressiom Figure 1Z2.

As in the theory of the wing, the relation between
circulation T~ or, more exactly, between rate of change of cir-

culation %Eﬂanﬂ induced angle i must be found by considering a

vortex sheet of strength %Ewlaft behind the trailing edge of
each blade coinciding with the streamlines,



The Theorem of A,Betz of Minimum Induced Energy Loss.

Analogously to the vortex sheet theory of the wing of
finite aspect ratio a rotating blade system of finite radial
span producing a 1ift force and its components of thrust and
torque (see equations (41)and (42)) leaves behind its trailing

edges free vortex sheets of strength ggqﬂarried along with the.

streamlines and inducing additional velocities, the ccaponents
of which perpendicular to the undisturbed inflow charge the
angle of inflow as expressed in the equations just quoted.

For a first approximation of the mathematically com-
plicated proposition it will be assumed that the vortex sheet
is following the streamlines relative to the blade system as
they would appear ina flow not changed by the induced velocities,
which presupposes that the induced velocities V¥.in Figure (9)
are very small relative to the undisturbed velocities V. One
has with this approximation a set o helical vortex sheets of
constant pitch and edge radius.

As a second approximation it has been suggested and
in some cases calculated that the trailing helical vortex
sheets, while having still a constant pitch and edge radius
be considered lying on the streamlines immediately behind the
trailing edges of the blades, as thes streamlines are changed
by the induced welocities. .

This second approximation would take into account
only the beginning of the deformation of the streamlines but
would neglect the deformation proceeding in the wake, relying
on the fact that only the induction of vortices relatively near
to the propeller disc can make an appreciable contribution.

The first approximation covers only the case of

wr
values s_ = _ﬁﬂ sufficiently far from the stationary or take
off running of propeller, this second approximation pernits a
better approach to the conditions where the rotational speed is
large relative to the forward speed.

The theorem of Betz is based on the described first

approximation assuming that 1 and im = E%% are small relative
to unity and that the vortex lines left behind the tralling -
edges are helical curves of constant pitch lying on circular
cylindrical surfaces. It may be stated as follows:

A screw propeller of any number of blades symmetrical-
ly arranged gives the minimum induced energy loss for prescrib-
ed torque or thrust if the distribution of circulation along

I=
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the blades is such that the induced velocities are the same as
would be produced by a rigid helical sheet moving with an axial
or rotational velocity.

The minimum proposition may be stated by referring to
equations (47a) and (46a) as follows:

GE = minimum

under the condition that

€ = cQ,prescrihed.

The theorem itself may be expressed by the following
formulae.

The induced angle distribution i = i(s) which gives
the minimum induced energy loss 1s glven by

W W
48 i = _l S 1 = }'\ 1
( ) ( )GE’min' W 1 + 5 3 W {{

where vy the axial velocity of the rigid helical sheets and w
the axial component of the undisturbed inflow velocity.

The minimum energy loss coefficient takes then the
value e
=3E53 ds F % 5 .,
sy

49 C
{ ) E,min.

That (48) actually represents the condition of the rigid axial-
1y moving sheet, namely that the velocities at its surface per-
pendicular to it are equal to the velocities of the surface 1t-
self perpendicular to it can be seen from Figure (13).

s |
."'"" FJ;'H o ; \

Figure 13.
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The proof can be given in a form much simpler and
more convinecing than the original proof of Betz. It follows
the method given by R.Fuchs for the corresponding theorem of
Munk for the straight moving wing.

We start from a reciprocal theorem of Gauss stating
that for two potential functions 31 and ¢% the following two

integrals both taken over the same closed surfaces are equal
ﬁis d —2= Jds ¢ —
1 2n 2 2n

where n is the direction of the normal defined positive towards
the interior of the closed surface. \

This surface may be given by two cross sections far
behind the propeller disc, by two circular cylindrical surfaces
the one at the radial number Sy the other at a sufficiently

great radial distance, and by two adjacent helical surfaces be-
tween the two cross sections.

To the integrals over this closed surface only the
helical parts give a contribution., In fact since ¢ and the

velocities -gf have become independent of the distance z of

the cross sections, 5111{:9%% on the imner cylindrical surface
1s zero and since ¢g—£ on the outer c:,r;l.indrical surface decreases
more rapidly than dS increases the integrals need to be taken
only over the helical surfaces on which the velﬂcities:%£ = V=
and the potentials ¢ are both of opposite signs.

For the potentials this is the case, because the cir-
culation over the edge of a helical sheet enclosing the vortex
strength down to the point considered,must be equal to T~ and

at this surface of discontinuity the potential ® must jump

from - = -PI:..
m 5 to 5

Therefore the Gauss theorem for this particular case
can be written in the form

S 2 5 2
€ = €
(50) 551 l* 12(1 + s%)ds 55 E* i,(1 + s )ds

v -1
where %g = V#, d8 = dzdr — = dzdr(sinec)
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-1 -2 2
g =Hi1-. =cotel, V® =1V = iw(ainm} ,(sina) =1+ 8

Equations (50) referring to (47a) may also be written

We consider now the energy loss due to the differerrcc
of two arbitrary circulatiﬂns'F1 s Té and the difference of the

two corresponding induced angles il-, is

Cp,12 = Jas(rpr -T30 (1 - 1)1 + 69)

c <)

g1t CE’E —fds(F‘j'_*iE - rﬁ*il)(]. + 3

n

+ - EJlﬂ * + s°
cE’l cE’E sTo* (1 + s%)

We choose then for i, the distribution (48) induced by a rigid

helical sheet so that

C C + C

= - 2Ald 3#*
E,l-E Ejl EIE 5 s ‘r.E

Now the condition of preseribed torque must be introduced

GQ =jd5 T'é*s(l + 512) = jds r'i*s(l + sil)

EE
- fas ryes( + A —E)

1 + s
This leads to .

2 8
2 Alds rl'*s + E}.fdﬁq*l ; ;..-.'-E - 2A dslﬁ*sig .

2 Alds To#s
Ts

W
But the premicse was that A= 1} and i should be small quanti-

ties and thereforc the two last integrals on the right side
must be neglccted, so that the relation appears in the form:

+ = [
2N dsTE s 2 E,1

and therefore the cnergy loss due to the differences becomes

= + -
C C c ECE

E,1-2 E,1 E,2 ,1

or CE,l = CE,E - cE,l-E .
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This last result proves the theorem asserted, because GE 1.9
,1-

being a positive quantity the particular energy loss correspond-
ing to the rigid helical sheet is shown to be smaller than any
other possible energy loss.

The theorem is remarkable because it gives the induc>?
angle distrlbution i(s) but not the vortex distribution

ar*
ds

real mathematical difficulty consists in the determination of
this particularT*'(s).

=7T#'(s) producing this angle distribution, so that the

Before proceeding further it may be shown that the
theorem of the solidified vortex sheet may be® extended to in-
clude the profile drag angle.

For this extension it may be remembered that the hy-
drodynamic alrfoil theory considers the fluid flow as a non
potential flow only in the boundary layer of the airfoil so
that for the vortex sheets behind the propeller disc thEEreci—
procal theorem is still valid but with velocity square V™ de-

creased to V°(1 - k§).

The energy loss due to a difference of two arhitrary
circulations and corresponding angles i is given by

2
::E;'l_E GE ! E’E- _f&s(@*(if 5}+r'1'*(15+5)(1+s Y(1-k§)

which by use of the reciprocal theorems if one neglects products
of higher order thanl ®*i becomes

- 2
Cp,1-2 = Cg,1* Cg o Ejds To*(i,+ %}{1 +s7)(1 - k§)

-J‘ds T 8L+ s%)(1 - k)

Assuming analogously to the assumption made above

1 - k9 1 + 2 "*l-—————z
{ }( ) 1 + 3
we get

S
C = C + -EhdsT—*s—st # 9(1 + s
E,1-2 E,1 FE,E 2 TTI ( )

in which finally the condition of prescribed torque coefficient
CQ must be satisfied as follows:
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fds ET']'_*_]. + s( —E—E + g)] (1L - k%)

+ s

j.ds sT'é* 1+ 3[12 +5}]{l - ko)
whence:

2 A ds'l';*5=2}’l. dssT’i‘*

where again gquantities of higher order than T~ have bzen
omitted.’

But

2C = 2Aldsi s +jﬁsi“*{(1 + 52) (1 - k%)
E,1l 1. 1

which leads again to

= - G
CE’:L GE,E E,]--E

The following more general theorem car aow be statzad.

Given a profile drag angle districution & = 5(s) the
minimum energy loss of a screw propeller is obtained by such a
distribution of circulation along the bladec that an induced
angle distribution 1 is produced according to the equation:

A SR S
(51) i = - I .
1 -5 1+ EE 2

where A depends on the value of the prescribed torque coeffi-

Prandtl's #pproximation for the Clrculation Producing the
Induced Angle Change Due to a Rigid Sheet.

The exact solution of the Lanlace equation of the
flow produced by a set of helical rigid shezts moving axially
or,what gives the same effect rotating about their axis is very
complicated as will be seen in the later chanters.

A treatment of the problem has been given by L.Prandtl
starting from the fact that the difference between the selfl-

'I""I_:ﬁlr

(]
iz

induction i = (See equation(p,.23)) and the exact value i
can be important only neer the blade tips, that is, near the
edges of the helical sheets, where the radial escape of the
flow on the pressure side of the blade acreoss the tip towards
the sxtion side is mcst active.
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To simplify the problem Prandtl replaces the region
near the edges of the helical sheets by a system of half infin-

ite plates at an interval ]
/‘//If,’/‘fd‘/ \
Zn]r tan
| ra — C

J)

F=£5+i?’f=ir:lugt=iclngr-c6



and for y =

The pﬂtentia1¢ has for y =

F

F

¢

32—

F -F

:;I. (-ge -e i""') = :H;I.ng{cus-—)
X

s

c cos el = ¢ cns-

TX

-1 ®
P =ccos e?

-c8 , Yy=clogr, t=e¢e

X
ic

LTEI
(e® e 2)

x= 0

na two equal and opposite wvalues

X

¢ =+c I cns'leT|

The potential therefore at the sheets makes a jump of the

iy

amount

m
=1 -E-
2C Cos e
w(r_-r)

2¢ cos +}

-1 (e 'g(l_ Bie) ll+se}

= 2c¢c cos = T_i
1 Y
Putting ¢ = & 1n order to get T"=1for s = - co one arrives at
(52) T = Zcos (e
T 1 -
B 1l = - E\E‘ - _;| o

Figure 14,
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Prandtl has suggested using this circulation function
Eihs a factor with which to multiply the c¢irculation obtained
rom theories not satisfying the condition of T = 0 at the blade
tips.

In fact the prnductqri with any function T of the

radius furnishes a function which has the desired sharp de-
crease of the circulatinnl"; TE towards the tip; this decrease

is faster the greater the number J of the blades and the small-
o _
er the piteh angle since (1 + se) = ginot .

Numerical comparison with the exact theory of Gold-
stein has given a surprisingly good agreement especially for
high values of S, (small values of el ), while for the low val-

ues of S, the approximation of the formula (52) underestimates
the decrease of the circulation near the tip.

The Approximate Blade Theory.

Prandtl has suggested using the formula for the dis-
tribution K of eirculation near the edges of a solidified vor-
tex sheet system normalized to an asymptotic value 1 by multi-
plying the mean value distribution of the induced angle ip by
K in order to represent the hydrodynamically necessary decrease
of the circulation I * = dﬂ*sim to zero at the blade tip, so
that

(53) iy = 1K(s)

where the f on K, following the suggestion of Prandtl, is
taken as the“same as the I"Inf (52).

The thrust and torque coefficients change then to
(54) Cp = ETrﬂ ds s Ki(s - (1 +8)(1 - k9
s
i

(55) Cq = 41r$ﬂ as SKi(1 + s(1 +8)) (1 - k§)
) _

The proposition of mayximum thrust for prescribed
torque leads then by a simple application the isoperimetric
method introducing a Lagrangian : gctnr/w_g
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% [1(5 - (1 +$))—/u,si(l + 5(1; +9)) } =0

and therefore to S
(58) i+3= (1 —pe)

—
1-ﬁ;¢32
Observing that 1- 4 must be a small quantity of the order of
magnitude i and therefore .¢ nearly equal to unity one sees
that any relation K assumed between ip and i1 as long as it
does not contain i itself leads back to the general result of

a practically rigid vortex sheet as well for the form drag
angle = 0 as also for a given distribution § = S (s).

Prandtl's formula in fact does not contain i and his
suggestion (53), though it seems somewhat arbltrary, agrees
quite well with the results of the rational and in a way exact
theory of S. Goldstein which will be given in the next chapter.

Yet if one chooses zs the helical vortex sheet not
the one formed by undisturbed relative streamlines but the one
corresponding to the relative streamlines as they are deflect-
ed at the trailing edge of the blade this change has in the ex-
pression for K the effect that the distance a between the rigid
sheets is changed because the pitch angle a is changed so that

;. A
- aL:mr-?*: =
Se cotd = T wr T Se,0 —I—I—I§+i-

e,0

-

and, as 1 can be assumed small relative to Sa o the factor

;]
dl + EE becomes
dl + 52 = 41 + EE (L - 1is_ )

€,0 e,0
so that

5 -‘;f;(l - 1591\!1. + sE(l - g-)
(52a) K ==arcos e e

For this second order approximation in K, in finding
the maximum one must allow i to vary also in the factor K in
(54) and (55). The expression for the distribution of i znd
T—* corresponding to (p.23) has not yet been used for numeri-
cal evaluation of the thrust and torque coefficients. It
would cover the case where the inflow angle change is no long-
er small in comparison to the undisturbed inflow angle ol., that
is for a propeller in the take off or steep climbing stage of
flight.

The further procedure for the first approximation |
method using (53),(54),(55) and (56) will only be sketched here.
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If the inner and outer limits Sy and Sgs that is,

the hub radius r, and the tip radius r_ , are prescribed, then

it is sufficient to introduce i from (56) and K from (52)

into the integrals for Cq and Cp and to evaluate them by some
graphical method, since %hﬂ? arg analytically difficult because
of the inconvenient function K. The Lagrangian factor . must
then be determined from the prescribed value of Gq and then the

maximum wvalue of CT can be numerically evaluated.

But there is also another maximum problem, because not
only the best distribution but also the best tip vadius r, or,
2T
equivalent with it, the radial number S, = —-f will be desired,

except in cases where it is already given by the height of the
under carriage or the necessity to aveid air-speeds approach-
ing the velocity of sound.

The differentiation in respect to the upper limit 8¢

leads to very involved formulae. Here also, therefore, it is
better to find the tip radius for maximum thrust by a graphical
method. Figure (15) shows how this has been done in a research
project worked out by the author; the figure will be self ex-
planatory.

The Potential Problem Solved by S, Goldstein.

Goldstein has considered the Betz theorem for a velocs
ity field induced by a set of helical solidified vortex sheets
giving the minimum energy loss affiliated to a screw propeller.
He considers in the same way as Prandtl and Betz a set of
sheets extending to infinity in both directions 2z = *6o, 80O
that the actual induced velocity when the sheets extend only
from 2 = 0 to 2 = +o0 at the propeller disc are only half of
the induced velocities figured for the complete set. For the
application later on it is sufficient to know the velocities
and circulations at the propeller disc and far behind it.

The + 0 doubling of the set of helical sheets reduces
the situation to a kind of two dimensional problem. In fact
the equation of the screw surfaces are, if w is the velocity of
advance of the propeller

~WZ - o 2T 4T
5 w ﬂ, j,l,fflll

I d,re

Figure 15.
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Instead of M read Q

Figure 15.
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If again Wy js the axial velocity of the helical set producing

the induced velocities, the boundary conditions

Y ) .3_%_
wlccasob 5z cos - sin ok

state that the normal component of w. sha.l be equal to the

B

normal component of the fluid veliccity at che helical surface.

This can also be written (cotd ={%§)

Y 24
(57) wywr =35 wr - W55
for 6 - wz = 0, :E‘}’L %T... and T & TLT, -

The helical symmetry shows that the velocity compon-

ents 2—"'—"‘-“ ’ lﬁ and. 2@ , and consequently also the potential -‘,?5
?z * raf ar

itself, from concideration of continuity inside and outside the
propeller jet and from the required zero velocity for r = o0,
can be functions only of r and

(52) 6-2=§

w
so that l?:_a@ Elé:B
2z

-

W

2L w’ o0 9@

and the boundary condition becomes by again introducing the

mtﬂ;a1:.1::»1'11'[‘1‘;:#—E = 5

;) 2 W
7 = - -
(572) B-- = 5

T
furq = 0, %—, %... and ri-{r {T,"

The differential equation ‘:-'-"Ei;ﬂI = 0 can then be written

2 (s 20 2\220 _
{55) Eﬁ{ﬂﬁ}‘F{l*’S)?’é‘D
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W, W
Goldstein puts temporarily —1- = 1, that is he intro-
duces temporarily a potential function
W, W
(59) h=4%
so that the boundary condition for the inner field r {.I'E becomes
2
(Erﬂ]) ﬂl:_ 5 > for g:ﬂ g:*rr;ﬂ,:g’
W 1+

and the differential equation in¢1 remains the same as in ¢ .
In addition, ﬁil must be single valued between the helical

sheets, its derivatives must vanish when r =o0 and it must be
continuous except at the screw surfaces. Only the outline of
the analysis and some of the results will begiven here. (For
the detalls we refer to: On the Vortex Theory of Screw Propell-
ers,by Sidney Goldstein, Proceedings Royal Society of London,
Series A Vol., CXXIII, 1929 pp. 440 - 465,)

Consider first the region outside the radius L In
this region the boundary condition (57b) does not hold and ﬁl

must be a continuous function which cam be expanded in a series
of sines of even multiples of § ; substitutingg, = £(s)sin(2ng)

r > r, into (58) one arrives at a set of Bessel equations
(58a) s 2(s °fy a1+ D = 0
as 25

so that the complete solution outside rg is
o0

¢|1 = n; Isin{Enl;) { AIEn{Ens) + BKEH(EHE}]

But the conditicir Lhat the wvelocities vanish at s =o0 makes
A =0 and the =clacion can then be written

K, (2
(80) ;ﬁl = nicnzin(ﬂn(;} En( ns) , B= °n
=

so that the constants cn are the Fourler constantgsof the develor-

ment of ,ﬂl on the circle s = s_, which implies the assumption
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that the expansion holds also for s = s and that the constants

¢, can be determined by the condition of continuous transition

of this solution for the outer field into the solution for the
inner field developed in the next chapter

Proceeding then to the inner region r<r, between the

rigid helical sheets the differential equation (58) must agein
be satisfied but with the boundary condition (57b) and besides
with the condition of continuous transition of the solution to
the solution (60) in the outer field.

The integration of (58) fulfilling (57b) leads after
some transformations to

— T s ((2m+1)s) I+ ((2m+l)s)
(61) 9, %‘F (2m+1)? “ I+ ((2m+1)s ) Fos(emel)§

In this expression the constants a must be determined by the
condition of continuous transition und Tlgutz) is defined as a

Lommel function in which the term containing the modified
Bessel function Ku{z) has been cancelled, by:

T1,v(2) = g_siﬂnrﬁrlu(‘) - ty,u(2)

and tlﬂﬂtl} is one of the functions composing a Lommel function
F

namely °m

(z) =m = 5— 5

‘1 1 (2% - v°) (4% - vO)...(an" - 7)

Yy

a comparison of (61) with (60) requires the development of
cos(2m + 1)G in a Fourier series in sin 2n{ and leads after
the elimination of the c, to an infinite number of equations

for the a s which are solved aporoximately by starting from the

solution of the plane flow between rigid straight sheets
(laminae) of the same edge radius r_.

Observing finally that @ =@ —_ and that at the
1

w
vortex sheet boundaries the jump of the potential is equal to
the circulation, Goldstein derives from (61) the_following ex-
pression for the distribution of the circulationT along t
radius:
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o 52 I (2m+1) s
(62) L2 = G(s}-_%_-;(_eé Ay - €.) am+1 ¢ )
1 m= ].HEiE IEIﬂ"‘l{{Em-I_l) SE}
where G (s) [EE 8 & FE:nni*l(s]
s) = -
. 1+s% T2 =0 (2m+1)*

2
:5' - -I-'__r';
Foqry (8) T4a2 Ty, omty (FHL) )

A =1, ®A. = %, B4 = TA. = .
o] ? 1 23 o 29.4" 3 - 4-+8
Se
a4 = - A + £
1 l+5§ i

_'D, DGl ‘"G,MT *D:DEE
+0,013 | +0.007 | +0.004

-

“gmﬂﬁg_ 2 3 5
80
&

partly interpolated and partly neglected for higher wvalues of

Sg* With these analytical, expressions tables are figured and

represented in the curves given in the diagrams (16) following.

In comparison Prandtl's approximation formula
2
(63) T ===k
1+57

of the preceding chapter 15 also represented by the dotted
curves, which show the same character as Goldstein's curves
throughout; the agreement improves with increasing ratio sg

of rotaticn tip speedtarﬁ to advance speed w; the thrust_
values are too high for high pitch (low values of se}.
‘But for high values of Sg» that iz small values of

inflow angles o (Figure (9)), the assumption of cylindrical
helical vortex sheets, that is, of negligible deformation of
the vortex sheet by its own induced velocities becomes less

and less allowable.v The limit could be estimated by figuring
the excess of ¢é = v% in the reaction theory and from it the

deformation of the vortex sheet two or three diameters of the
propeller disc behind it. )
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Inflow Angles Induced by Given Vortex Distributions.

While the formula of Prandtl and the more exact
theory of S.Goldstein aim at the determination of the vortex
distribution corresponding to the special induced angle dis-
tribution of a set of rigid helical sheets, the author has
- given a method of solving the inverse problem of determining
the angles (and velocities) induced by given vortex distribu-
tions. In principle this problem is solvable by the applica-
tion of the Biot-Savart induction law of the effect of all the
vortex elements on a point of observation and in the last chap-
ter an application of this principle by Troller will be dis-
cussed. Yet as this method does not make use of the helical
symmetry of the problem and as it leads to geometrically very
inconvenient integrals and to certain difficulties at the
sources of self induction another method has been developed.

It assumes at first a simple linear source distribu-
tion in the sector spaces between the vortex sheets giving the
helical vortex sheets of arbitrarily prescribed vortex distri-
bution and then removes the source distributions but not the
vortex sheets by a series of particular integrals of the
Laplace - Poisson differential equation taking account of the
source distribution by means of the variation of parameters.

We start with the Laplace - Poisson equation
2 1 2 BQ) 1 :?g a%ga
{ J ¢ T ar(r ar I‘E + 22 | q(rl F'?"}"'

Using again the helical symmetry of cylindrical helical sheets
going from z = -o0 to z = +oU with the "helical" varlable

6-wz =56

1)

and the radial ?ﬂriahle‘%E s as before (84) changes into

(65) 1 2 %g) + ?;)‘%g(l + ;l'ff) = - Eg q(sld;)_

I

First part of the solution.

We assume a source distribution (later on to be re-
moved) given by an arbitrary function odd in ¢, 8 = 0 being
the radius halfway between the vortex sheets. For simplicity we

choose a funetion linear :Lng-

2

w- - . - -~ I

S5a(s, ) = -fe(e), - F<G<H]
repeating itself for each secior Sspace.
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The potential function following from this assumption
as solution of (65) is

R =§[c11ug s+ ¢y + j:i%s 5::1' v p(v)]

and with the condition that gL and its derivatives be finite
at the axis and zero at infinity

g, - j::‘f jziw oY) -

The velocities derived from this potential are

2 _
e @ fzidv\vn(w
3 -
(68) v(0}= -;é‘- = -‘;ﬁ’s ]}.21 ‘é—g i dav ¥ p(¥)
L) 2%

2z

%f%f (F aywew

and only gﬂﬂ and the radial velocity component change discon-
tinuously at the radii

+ T (22 - 3)
,.:E:, f”i‘ ,!-,:

(e)
while the circumferential velocitles v and the axial veloc-

(o)

jties w' ' are continuous across these radii, being constant
along each circumference rj also the pressure 1s continuous.

The circulation being equal to the potential dis-
continuity is given by

- _or (4
(e7) T = (2 ¢G}§=% = —TL -{Si dy ¥ p(¥)

and the vortex strength

(©)

_dl_ -1 (S - -
(e8) E—jﬂ—_— fs jnd‘va{”#)-ﬁu

where vortex strength and discontinuity of radial velocity are



equal, as is .necesasary.

The inversion of this last equation is especially
simple for the source function linear in § namely

_ 2 14, 4,
(68a) P= 5 E'EE{E a;)

so that the source distribution can be adapted to any chosen
vortex distribution.

Second part of the solution.

Since the assumed source distribution is not actually
existent,it must be removed by a second additional solution of
the Laplace - Poisson equation with the opposite source distri-
bution but without discontinuity of potential and radial veloc-
ity.

We take a trigonometric series running over the
whole circumference in the periodie form

ol
(69) g, = % R, sin(n£G)
o

in which every term assumes the value zero for §=n,:§= «» 0N the
halfway radii and on the vortex sheets themselves, soas not
to change the potential values ¢b st the wvortex sheets and to

have the proper period and symmetry of the set up.

If one uses the convenlent dimensionless radial
variable

ntls ='G;
(65) takes the form
dn +r
(aﬁa}ﬂ—% ,‘5%; S ﬁg)-ﬂn(lﬂa%)g) = - ﬁﬁzp _;rgsm npGab
n gp
=-(1) £,
W a3

(65a) is the equation of modified Bessel functions and the

solution with the integration constants f_and g_ can be
written a a

_ n 2
R, = (-1) (nﬂ.}z’ [fn Inﬁ(ﬂqul) T Ep Knj (a;i) ¥ Hn,part.]
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The particular integral may be determined by varia-

tion of parameters as follows:

Hﬁ:fl{q—ElK:{]

£+ gkt = ()7 by

F1(IK - K'T) = (-1)% 22K

RN

(nf)
n gp
g'(K'I - I'K) = (-1) == 1
(ng)®
Now using the general relation
nt) do %ns Tdo T T o
Il n n

one obtains

1!

ft
n

~(-1)" (_n%z K o

" 2
gt = +(-1)" s 1o

and with these values the complete 1ntegral=

(66) Ry = ("l)n —£2, [fn Ing (U;i) * Enﬂni'f{u;l)

(nf)®
-5?11:
+
=

N,

j at - T p(T) (T, 5 (0K, (T )-K, p(a) InE(tn}}]

From (66) follow the additional velocities, which pass contin-
uously through the helical sheets.

1 dR
{u( ) =‘j;‘f’?:a-n%.ﬂ sin(nt §)
n

(67 < WP 0 q an® », cos(alh)

\wcl) = - %Enl R, cos(n .t $)
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The boundary conditions to be satisfied are that all

three velocities must be zero at infinity, and the radial ve-
locity zero at the hub radius ordinate O O g4 The condition
>

that u(l), v(l}and w(l) vanish at infinity makes
e _
Injl (ﬂ;'t) {fn +S’ tndtnﬁni(tn}p} B
9
and so e
- tndtnﬂnﬂ- (Tn)P *
9
(1)
The t:ﬂnditinn that u  vanishes at the hub radius g = ﬂ; shows
that ( ) =0 and following from it
n —
n n,i
By = 0
so that

(67a) Rp=- ('1) (n j:-} 3| Kn ‘g( 9 }Sﬂ;ﬁd‘ tnI nf ( T‘-n)p"'lnk @ftnﬁﬁnz{%

What is needed for the fnlluwing is the induced velocity com-
ponent V* perpenﬂicular to the undisturbed velocity V at the

radii § = 1-, f,...,ﬁ%lll

This induced velocity must be composed of half the
values of the induced velocity components vy and Wy for the

reason already explained in the preceding chapters.

Thus we get EE=1— [_Tﬂ-‘%ﬁ 4- ]

and as W in view of the positive sense of 2 is negative

i = 1 E (0) (15 (D) (1})-1
F(]_—Ea-s W + W E— | .

Using now formulae (66) and (68) with the angles 9 , E?étﬂ.

one finds the expression

1-2—?;—[11 +Z( 1" njtn]
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and inserting the expressions for RD and p given cbove, for

R, from (67a) and for T ' =T% 5;1 one arrives finally at:

o
- a n,e

= ar* ar®
o =22 |8 (o) a(e, Ty (81 () |05 O,
n,i n -

It may be observed that

was found as the average induced angle (taken over the circum-
ference), furthermore that (70) represents the induction by

a*

the vortex sheet —if as the summation of the effects from the
d
inside of the point of observation o = nfs = nE"'-:'-— by the

first integral and from the outside of a; by the second inte-
gral.

The derivation of the velocities induced by & cylin-
drical system of vortex sheets at the propeller disc section
has also been treated by means of the Biot - Savart theorem.
However this theorem requires the calculation of integrals de-
pending on all the radii from any point of the vortex sheets
to all other points of the circular cross section and further
requires a special discussion of the self induction of the
points of the vortex sheets where the denominator of the inte-
grand becomes zero. Betz has used these integrals to prove

his theorem, Lamb has applied it partly for the theory of the

solenoid and Troller has performed some very instructive com-
putations.

We close our discussions by a remark about the rela-
tion between the distribution of eirculationT (s) and the de-
sign characteristics of the propeller blade consisting of
blade width,

2rrb
c = —T‘(]I-El)
of blade pitch angle (Fig. 9), lift coefficient EL and the
undisturbed inflow velocity ?ﬂ =‘J WE + wErE.
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In fact the formula (43) p. 22 derived by comparison
of the 1lift coefficient expression with the Kutta - Joukowskl
theorem states this relation by

_ 2
L0 = T
C
which gives the product of blade shape and pitch angle F = _Qfl
o
_ 4l
pe =
Fb

In Fig. (44) the results of this formula in connec-
tion with the results for different blade numbers = 2,3,4,09
given by the curves on Fig. (44) are shown and it appears that
the blade shape corresponds closely to the shapes which have
proved efficient in practice.

Summary and Literar emark

The first part of this course on the hydrodynamics of
propellers brings the general properties of any hydrodynamic
propelling mechanism following from the application of the
general theorems of momentum, moment of momentum and energy on
the generation of a jet.(l) This kind of approach furnishes
the maximally obtainable effects, but it gives very few indica-
tions about the design of propelling mechanisms., However it
embraces more than the Blade (2) and Blade - Vortex (3) Thcory
of the screw propeller in so far as 1t gives results about the
statlionary propelling, wind motor and fan mechanisms where
mathematical difficulties of the Blade - Vortex Theory have
not yet been surmounted.

The second part treats this Vortex Theory of the pro-
peller by a rational application of (2) the circulation - vor-
tex theorems, (1) the 1lift and drag coefficients of airfoils
and the dynamic principles of momentum, moment of momentum and
energy.

In particular it starts with the expressions of the
inflow wvelocity and inflow angle change as "induced" by the
helical vortex sheets left behind the trailing edges of the
advancing and rotating blades. It formulates in a non dimen-
sional way the thrust - torque - and energy loss integrals,

The Theorem of Minimum Induced Energy Loss of the
rigid vortex sheet (3) and its generalization including the
form drag coefficients is derived by potential theory.(4) It
follows then the derivation of an approximative formula for the
vortex distribution corresponding tc the rigidly induced inflow
engle (3) und the "exact" theory of this distribution still
only approximately correct for small ratios of induced and undis-
turbed inflow angle. (5) To indicate a technicully practicel.
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theory for the best arrangement of thrust distribution and
diameter the thrust and torque coefficients are graphically
discussed using Prandtl's first named approximative formula,

The inverse approach to determine the induced in-
flow from given vortex distributions that is from given thrust
and torque distributions along the blade is also treated some-
what summarily by the Biot - Savart integral theorem (3)(7)
and more in detail by the method of superposition of a simple
discontinuous and a continuous solution of certain source dis-
tributions. This part closes with a remark about the design
characteristics following from distribution of eirculation
and induced angle,
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